Abstract

Aims. Light curves of microlensing events occasionally deviate from the smooth and symmetric form of a single-lens single-source event. While most of these anomalous events can be accounted for by employing a binary-lens single-source (2L 1S) or a single-lens binary-source (1L2S) framework, it is established that a small fraction of events remain unexplained by either of these interpretations. We carried out a project in which data collected by high-cadence microlensing surveys were reinvestigated with the aim of uncovering the nature of anomalous lensing events with no proposed 2L 1S or 1L 2S models. Methods. From the project we found that the anomaly appearing in the lensing event OGLE-2023-BLG-0836 cannot be explained by the usual interpretations, and we conducted a comprehensive analysis of the event. From thorough modeling of the light curve under sophisticated lens-system configurations, we arrived at the conclusion that a triple-mass lens system is imperative to account for the anomalous features observed in the lensing light curve. Results. From the Bayesian analysis using the measured observables of the event timescale and angular Einstein radius, we determined that the least massive component of the lens has a planetary mass of 4.36−2.18+2.35 MJ. This planet orbits within a stellar binary system composed of two stars with masses 0.71−0.36+0.38 M⊙ and 0.56−0.28+0.30 M⊙. This lensing event signifies the sixth occurrence of a planetary microlensing system in which a planet belongs to a stellar binary system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call