Abstract

Previous work has attempted to understand the tectonic evolution of the Red Sea-Gulf of Aden region through a focus upon plate kinematics and reconstruction of plate interactions in a two dimensional sense. A significant complement to the three dimensional puzzle can be derived from a critical examination of the vertical component, tectonic subsidence analysis. By removing the isostatic contributions of sediment loading and unloading, and fluctuations in sea level, the remaining thermal-mechanical contribution to a basin`s subsidence can be determined. Such an analysis of several Ogaden Basin wells reveals multiple pulses of tectonic subsidence and uplift which correspond to far-field tectonic activities in the Red Sea and Gulf of Aden. One of the more dramatic is a Jurassic tectonic pulse circa 145-130 m.a., and a later extensional event which correlates to a major subsidence event ubiquitous through-out the Gulf of Aden, related to Gondwana Land breakup activities. Tectonic uplift during the Tertiary coincides with early Red Sea rifting episodes. Such activities suggest the Ogaden Basin has been a relatively stable East African cratonic basin, but with heating-extension events related to nearby plate interactions. In terms of hydrocarbon generation, the use of steady state present day geothermal gradients, coupled with subsidencemore » analysis shows that potential Paleozoic and Mesozoic source rocks initiated generation as early as the Jurassic. The generating potential of Paleozoic source rocks would only be exacerbated by later heating events. Furthermore, cooling and tectonic uplift during the Tertiary would tend to arrest on-going hydrocarbon generation for Jurassic source rocks in the Ogaden area.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call