Abstract

The communication bottleneck has severely restricted the scalability of distributed deep learning. Tensor fusion improves the scalability of data parallelism by overlapping computation and communication tasks. However, existing tensor fusion schemes only result in suboptimal training performance. In this paper, we propose an efficient communication mechanism (OF-WFBP) to find the optimal tensor fusion scheme for synchronous data parallelism. We present the mathematical model of OF-WFBP and prove it is an NP-hard problem. We mathematically solve the mathematical model of OF-WFBP in two cases. We propose an improved sparrow search algorithm (GradSSA) to find the near-optimal tensor fusion scheme efficiently in other cases. Experimental results on two different GPU clusters show that OF-WFBP achieves up to 1.43x speedup compared to the state-of-the-art tensor fusion mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.