Abstract

Osmanthus fragrans Lour. is a popular and traditional Chinese decorative plant. Salinity is one of the major abiotic stresses affecting the growth and development of O. fragrans. However, the involvement of the SQUAMOSA PROMOTER BINDING PROTEIN-like (SPL) gene in salt stress response is little understood. To elucidate the role of the OfSPL genes in salt stress resistance, we isolated a candidate gene, OfSPL11, from the O. fragrans genotype ‘Yanhong Gui’. OfSPL11 is a transcriptional activator that is located in the nucleus. OfSPL11 is a salt-inducible gene that is highly expressed in young leaves and shoots, according to tissue-specific expression and external treatment. The promoter activity of OfSPL11 is activated by salt treatments in the leaves of tobacco and callus of O. fragrans. The OfSPL11 transgenic lines exhibited better growth and physiological performance; under salt stress, transgenic lines have a faster germination rate, longer roots, and less leaf withering than the wild type (WT). In addition, OfSPL11 overexpression protected the leaves from oxidative damage by suppressing the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROSs) in Arabidopsis. OfSPL11 overexpression can promote the expression of some genes in response to abiotic stresses, including AtCBL1, AtCOR15A, AtCOR6.6, AtRD29A, AtSOS2 and AtSOS3. Yeast one-hybrid assays and transient expression assays showed that OfZAT12 (homologous to Arabidopsis AtRHL41 gene) specifically binds to the OfSPL11 promoter and positively regulates its expression. This study sheds fresh light on the role of OfSPL11 in enhancing salt tolerance in O. fragrans by promoting growth and reducing oxidative damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call