Abstract
As offshore wind power is continuously integrated into the electric power systems in around the world, it is critical to understand its variability. Weather regimes (WRs) can provide meteorological explanations for fluctuations in wind power. Instead of relying on traditional large-scale circulation WRs, this study focuses on assessing the dependency of wind resources on WRs in the tailored region clustered based on the finer spatial scale. For this purpose, we have applied self-organizing map algorithm to cluster atmospheric circulations over the South China Sea (SCS) and characterized wind resources for the classified WRs. Results show that WRs at mesoscale can effectively capture weather systems driving wind power production variability, especially on multi-day timescale. Capacity factor reconstruction during four seasons illustrates that WRs highly influence most areas in winter and southern part of SCS in summer, and WRs can serve as a critical source of predicting the potential of wind resources. In addition, we further qualify the wind power intermittency and complementarity under different WRs, which have not been assessed associated with WRs. During WRs with changeable atmosphere conditions, the high complementarity over coastal areas can reduce the impact of intermittency on wind power generation. The proposed approach is able to be implemented in any region and may benefit wind resource evaluation and characterization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.