Abstract

Renewable sources stand out in energy planning due to their contribution to greenhouse gas emission reduction when displacing fossil fuels and the enhancement of energy security through the diversification of the energy matrix. Understanding and optimizing the complementary operative synergy between different energy sources over time and space leads to efficient policies. This article uses an hourly Pearson’s correlation coefficient to explore the complementarity between offshore wind and other power generation sources in the Brazilian matrix. An analysis of offshore wind power feasibility in the Brazilian power system will be conducted, considering environmental implications, synergies with the oil industry, costs, and complementarities with other energy sources. The methodology uses an optimization model to minimize costs and optimize the production mix while considering the time series of renewable energy, subject to demand constraints, renewable resource availability, reservoir storage, capacity limitations, and thermal generation. The study concludes that the northeast and southeast electrical subsystems must start offshore wind installation in Brazil due to their complementarity with hydropower production, synergy with the oil and gas industry, and proximity to the largest consumption spots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call