Abstract

The large number of switching elements in the modular multilevel converter (MMC) is a challenging problem when modeling the MMC-HVDC systems for the computation of electromagnetic transients. The modeling complexity increases even further when a multiterminal (MT) MMC-HVDC system is used to integrate offshore wind farms (OWFs) with power-electronics-based wind energy converters, such as doubly fed induction generators (DFIGs). This paper compares modeling accuracy and computational performances for various combinations of MMC and OWF models. Onshore and offshore ac fault simulations are performed for an OWF system composed of DFIG-type wind turbines and connected to a practical ac grid through an MT MMC-HVDC system. The OWF system model includes the detailed representation of the offshore collector grid and the associated overcurrent protection. The offshore MMC controls include an offshore fault current limiter and fast OWF power generation reduction-based fault-ride-through function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.