Abstract

Absolute calibration of sea level measurements collected from space-borne radar altimeters is usually performed with respect to collocated sea level in situ records from tide gauges or GPS buoys (Ménard et al. 1994; Haines et al. 1996; Bonnefond et al. 2003; Haines et al. 2003; Schum et al. 2003; Watson et al. 2003; Watson et al. 2004). Such a method allows regular and long-term control of altimetric systems with independent records. However, this approach is based on a single, geographically dependent point. In order to obtain more significant and accurate bias and drift estimates, there is a strong interest in multiplying the number of calibration opportunities. This article describes a method, called the “offshore method” that was developed to extend the single-point approach to a wider regional scale. The principle is to compare altimeter and tide gauge sea level data not only at the point of closest approach of an overflying pass, but also at distant points along adjacent satellite passes. However, connecting sea level satellite measurements with more distant in situ data requires a more accurate determination of the geoid and mean ocean dynamic topography slopes, and also of the ocean dynamical changes. In this demonstration experiment, 10 years of averaged TOPEX/Poseidon mean sea level profiles are used to precisely determine the geoid and the mean ocean circulation slope. The Mog2d barotropic ocean model (Carerre et Lyard 2003) is used to improve our estimate of the ocean dynamics term. The method is first validated with Jason-1 data, off Corsica, where the dedicated calibration site of Senetosa provides independent reference data. The method is then applied to TOPEX/Poseidon on its new orbit and to Geosat Follow On. The results demonstrate that it is feasible to make altimeter calibrations a few tens to hundreds of kilometers away from a dedicated site, as long as accurate mean sea level altimeter profiles can be used to ensure the connection with reference tide gauges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.