Abstract
In this paper we provide a detailed account of our calculation, briefly reported in arXiv:2209.09263, of a two-particle form factor of the lowest components of the stress-tensor multiplet in N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 sYM theory on its Coulomb branch, which is interpreted as an off-shell kinematical regime. We demonstrate that up to three-loop order, both its infrared-divergent as well as finite parts do exponentiate in the Sudakov regime, with the coefficient accompanying the double logarithm being determined by the octagon anomalous dimension Γoct. We also observe that up to this order in ’t Hooft coupling the logarithm of the Sudakov form factor is identical to twice the logarithm of the null octagon, which was introduced within the context of integrability-based computation of four point correlators with infinitely large R-charges. The null octagon is known in a closed form for all values of the ’t Hooft coupling constant and kinematical parameters. We conjecture that the relation between the former and the off-shell Sudakov form factor holds to all loop orders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.