Abstract

We calculate the binding energy of 16O for a set of phase-shift-equivalent potentials previously studied in nuclear matter. Off-shell variations of up to 2.8 MeV per particle occur compared with about a 10 MeV per particle variation in nuclear matter. As in nuclear matter calculations a nearly linear relation exists between the variations in the binding-energy results and the wound integral k. We compare the 16O results with a nuclear matter calculation at the “equivalent” nuclear matter density of k F = 1.13 fm −1. This “equivalent” density reflects the fact that 16O has a surface and hence a lower average density than nuclear matter. The 16O and nuclear matter off-shell variations are comparable once one takes into account the lower average density of 16O and the suppression of the relative D-wave interaction — also a surface effect. We present a method of computing the correlated wave functions of finite nuclear systems and display such wave functions for 16O. The correlated wave functions of 16O and of nuclear matter are strikingly similar for all of the potentials studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.