Abstract

Moving toward a bioeconomy system is fundamental to climate change mitigation, nevertheless, the biotechnological routes should guarantee an environmental sustainability. Isobutene, a precursor in several industrial applications, is one of those chemicals that the environmental effects of its bio-based production have been scarcely explored. This study aims to assess the environmental performance of two biorefinery systems: the first one focuses only on the production of isobutene (I) and the second one on the co-production with lignin (I + L), both from the valorisation of wheat straw. The Life Cycle Assessment methodology is used to determine the environmental impacts considering mid-point and end-point categories. Biorefineries report 0.65 and 1.32 kg CO2-eq per kg of biomass processed for I and I + L system, respectively. The most affected endpoint damage category corresponds to Human Health, regardless of the scenarios. Moreover, the pre-treatment stage constitutes the main hotspot of both systems considering midpoint and endpoint perspectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call