Abstract

This paper presents an adaptive nonlinear model predictive control method with zero steady-state error (called offset free) in the presence of the plant-model mismatch and external disturbances. A neural network model is trained online to predict the process output recursively over the prediction horizon. The output of the neural network is modified by the current output prediction error to achieve offset-free model predictive control method. The stability of the closed-loop system is shown using the Lyapunov direct method. Simulation results on a pneumatic servo system show effectiveness of the control strategy as compared with the recently reported methods in literature under plant-model mismatches and unmeasured disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.