Abstract

The demand for CMOS precision operational amplifiers for critical applications has continuously increased over time due to higher accuracy and sensitivity requirements. Trimming or chopper architectures are advanced solutions that reduce the offset voltage and improve the circuit’s parameters, but the complexity and the increased chip die size are serious downsides. An efficient solution is a source degeneration configuration to control the transistor’s current-mirror transconductance, which impacts the offset voltage, with cost savings and a die area reduction also obtained. This paper focuses on designing and implementing such an approach in a two-stage folded-cascode operational amplifier. State-of-the-art thin-film resistors that use silicon–chromium as the metallic alloy were implemented to reduce mismatch variations between these passive components. Distinct methods that control the offset voltage parameter are also discussed and established. A comparison between the offset voltage standard deviation obtained using different types of resistors and that achieved with the innovative high-precision resistors was also carried out. The source degeneration’s impact on the common-mode rejection ratio, power supply rejection ratio, bandwidth and phase margin was also analyzed, and a comparison between the proposed design and the classical one was performed. The process variation’s influence on the circuit functionality was studied. A pre-layout ±1.273 mV maximum offset voltage at T = 27 °C was achieved using vector/array notations for the amplifier with the best overall performance. Post-layout simulations that included parasitic effects were performed, with a ±1.254 mV maximum offset voltage reached at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.