Abstract
We present an approximation method for offset curves of polygons on an oblate ellipsoid using implicit algebraic surfaces. The polygon on the ellipsoid is given by a set of vertices, i.e. points on the ellipsoid. The edges are the shortest geodesic paths connecting two consecutive points. The offset curve of the polygon consists of two parts. The offset curve of an edge is the set of points that are at the same distance from each point on the edge, in the normal direction of the edge. The offset curve of a vertex is the set of points that are at the same geodesic distance from the vertex. Our offset approximation method uses plane section curves for offset curves of edges and prolate ellipsoids for offset curves of vertices. Since our offset approximation curve is constructed from implicit algebraic surfaces, it is easy to check whether a given point on the oblate ellipsoid has intruded into the inside of the offset curve. Moreover our method achieves extremely small approximation errors. We apply our method to numerical examples on the Earth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.