Abstract

We study thermoelectric transport in ultrathin topological insulators under the application of circularly polarized off-resonant light of frequency {\Omega} and amplitude A. We derive analytical expressions for the band structure, orbital magnetization Morb, and the thermal (\k{appa}xy) and Nernst ({\alpha}xy) conductivities. Reversing the light polarization from right to left leads to an exchange of the conduction and valence bands of the symmetric and antisymmetric surface states and to a sign change in Morb,{\alpha}xy, and \k{appa}xy. Varying the sample thickness or A/{\Omega} leads to a strong enhancement of Morb and {\alpha}xy. These effects, accessible to experiments, open the possibility for selective, state-exchanged excitations under light and the conversion of heat to electric energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call