Abstract

Detection of copper plays a prominent role in the environmental protection and human health. Herein, we firstly design and construct an “off–on” upconversion fluorescence resonance energy transfer (UFRET) probe with low toxicity for the Cu2+ determination by using NaYF4: Yb3+, Er3+ upconversion nanoparticles (UCNPs) and Au NPs. UCNPs with positive charge and Au NPs with negative charge are respectively employed as the donor and acceptor, and bound together to form UFRET probe. The upconversion fluorescence quenching of UCNPs occurs by Au NPs through FRET (defined as “off” state). When Cu2+ exists in samples, Cu2+ reacts with 4-mercaptobenzoic acid (4-MBA) capped on the surface of Au NPs to make Au NPs detach from UCNPs, leading to the termination of FRET and the recovery of upconversion fluorescence (defined as “on” state). “Off-on” typed UFRET probe has excellent sensing performances, including linear range of 0.02–1 μM Cu2+ concentration, the limit of detection of 18.2 nM, high selectivity to Cu2+ and good recovery. The probe has been successfully used to determine Cu2+ in spiked tap water with satisfactory results. The probe will provide theoretical and technical support for the design of new sensitive heavy metal ion detection probe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call