Abstract
The ever-increasing computational requirements of HPC and service provider applications are becoming a great challenge for hardware and software designers. These requirements are reaching levels where the isolated development on either computational field is not enough to deal with such challenge. A holistic view of the computational thinking is therefore the only way to success in real scenarios. However, this is not a trivial task as it requires, among others, of hardware–software codesign. In the hardware side, most high-throughput computers are designed aiming for heterogeneity, where accelerators (e.g. Graphics Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs), etc.) are connected through high-bandwidth bus, such as PCI-Express, to the host CPUs. Applications, either via programmers, compilers, or runtime, should orchestrate data movement, synchronization, and so on among devices with different compute and memory capabilities. This increases the programming complexity and it may reduce the overall application performance. This article evaluates different offloading strategies to leverage heterogeneous systems, based on several cards with the first-generation Xeon Phi coprocessors (Knights Corner). We use a 11-point 3-D Stencil kernel that models heat dissipation as a case study. Our results reveal substantial performance improvements when using several accelerator cards. Additionally, we show that computing of an approximate result by reducing the communication overhead can yield 23% performance gains for double-precision data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of High Performance Computing Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.