Abstract
Although handwritten signature verification has been extensively researched, it has not achieved an optimal classification accuracy rate. Therefore, efficient and accurate signature verification techniques are required since signatures are still widely used as a means of personal verification. This research work presents efficient distance-based classification techniques as an alternative to supervised learning classification techniques (SLTs). The Local Directional Pattern (LDP) feature extraction technique was used to analyze the effect of using several different distance-based classification techniques. The classification techniques tested, are the Euclidean, Manhattan, Fractional, weighted Euclidean, weighted Manhattan, weighted fractional distances and individually optimized resampling of feature vector sizes. The best accuracy, of 90.8%, was achieved through applying a combination of the weighted fractional distances and locally optimized resampling classification techniques to the Local Directional Pattern feature extraction. These results are compared with results from literature, where the same feature extraction technique was classified with SLTs. The distance-based classification was found to produce greater accuracy than the SLTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.