Abstract
This paper presents a system for the offline recognition of large vocabulary unconstrained handwritten texts. The only assumption made about the data is that it is written in English. This allows the application of Statistical Language Models in order to improve the performance of our system. Several experiments have been performed using both single and multiple writer data. Lexica of variable size (from 10,000 to 50,000 words) have been used. The use of language models is shown to improve the accuracy of the system (when the lexicon contains 50,000 words, the error rate is reduced by approximately 50 percent for single writer data and by approximately 25 percent for multiple writer data). Our approach is described in detail and compared with other methods presented in the literature to deal with the same problem. An experimental setup to correctly deal with unconstrained text recognition is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.