Abstract

For a variety of reasons, handwritten text can be digitalized. It is used in a variety of government entities, including banks, post offices, and archaeological departments. Handwriting recognition, on the other hand, is a difficult task as everyone has a different writing style. There are essentially two methods for handwritten recognition: a holistic and an analytic approach. The previous methods of handwriting recognition are time- consuming. However, as deep neural networks have progressed, the approach has become more straightforward than previous methods. Furthermore, the bulk of existing solutions are limited to a single language. To recognise multilanguage handwritten manuscripts offline, this work employs an analytic approach. It describes how to convert Malayalam and Kannada handwritten manuscripts into editable text. Lines are separated from the input document first. After that, word segmentation is performed. Finally, each word is broken down into individual characters. An artificial neural network is utilised for feature extraction and classification. After that, the result is converted to a word document.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.