Abstract

User-specific hybrid recommender systems aim at harnessing the power of multiple recommendation algorithms in a user-specific hybrid scenario. While research has previously focused on self-learning hybrid configurations, such systems are often too complex to take out of the lab and are seldom tested against real-world requirements. In this work, we describe a self-learning user-specific hybrid recommender system and assess its ability towards meeting a set of pre-defined requirements relevant to online recommendation scenarios: responsiveness, scalability, system transparency and user control. By integrating a client-server architectural design, the system was able to scale across multiple computing nodes in a very flexible way. A specific user-interface for a movie recommendation scenario is proposed to illustrate system transparency and user control possibilities, which integrate directly in the hybrid recommendation process. Finally, experiments were performed focusing both on weak and strong scaling scenarios on a high performance computing environment. Results showed performance to be limited only by the slowest integrated recommendation algorithm with very limited hybrid optimization overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.