Abstract
Prior to the implementation of digitisation processes, the handwritten signature in an attendance sheet was the preferred way to prove the presence of each student in a classroom. The method is still preferred, for example, for short courses or places where other methods are not implemented. However, human verification of handwritten signatures is a tedious process. The present work describes two methods for classifying signatures in an attendance sheet as valid or not. One method based on Optical Mark Recognition is general but determines only the presence or absence of a signature. The other method uses a multiclass convolutional neural network inspired by the AlexNet architecture and, after training with a few pieces of genuine training data, shows over 85% of precision and recall recognizing the author of the signatures. The use of data augmentation and a larger number of genuine signatures ensures higher accuracy in validating the signatures.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.