Abstract
We previously proposed and numerically analyzed a theoretical framework of an energy-efficient offline dynamic wavelength and bandwidth allocation (DWBA) algorithm designed for a delay-constrained time and wavelength division multiplexed passive optical network (TWDM-PON). This DWBA algorithm exploits the tunability and the sleep/doze capabilities of a 10 Gbps vertical-cavity surface-emitting optical network unit (10G-VCSEL-ONU) to improve the energy-savings at the OLT and the ONUs, respectively. In this work, using simulation results on the number of active wavelengths and the percentage of energy-savings, we verify the theoretical framework proposed in our previous study. Most importantly, we show that the average delay of upstream packets are not adversely affected by the proposed energy-saving mechanism and is kept below the specified maximum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.