Abstract

In solving many real-world optimization problems, neither mathematical functions nor numerical simulations are available for evaluating the quality of candidate solutions. Instead, surrogate models must be built based on historical data to approximate the objective functions and no new data will be available during the optimization process. Such problems are known as offline data-driven optimization problems. Since the surrogate models solely depend on the given historical data, the optimization algorithm is able to search only in a very limited decision space during offline data-driven optimization. This paper proposes a new offline data-driven evolutionary algorithm to make the full use of the offline data to guide the search. To this end, a surrogate management strategy based on ensemble learning techniques developed in machine learning is adopted, which builds a large number of surrogate models before optimization and adaptively selects a small yet diverse subset of them during the optimization to achieve the best local approximation accuracy and reduce the computational complexity. Our experimental results on the benchmark problems and a transonic airfoil design example show that the proposed algorithm is able to handle offline data-driven optimization problems with up to 100 decision variables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call