Abstract

PageRank problem is the cornerstone of Google search engine and is usually stated as solving a huge linear system. Moreover, when the damping factor approaches 1, the spectrum properties of this system deteriorate rapidly and this system becomes difficult to solve. In this paper, we demonstrate that the coefficient matrix of this system can be transferred into a block form by partitioning its rows into special sets. In particular, the off-diagonal part of the block coefficient matrix can be compressed by a simple low-rank factorization, which can be beneficial for solving the PageRank problem. Hence, a matrix partition method is proposed to discover the special sets of rows for supporting the low-rank factorization. Then a preconditioner based on the low-rank factorization is proposed for solving difficult PageRank problems. Numerical experiments are presented to support the discussions and to illustrate the effectiveness of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.