Abstract

Off-axis electron holography and micromagnetic simulations have been used to investigate magnetization reversal mechanisms and remanent states in exchange-biased submicron Co84Fe16/Fe54Mn46 patterned elements. Domain structures within the elements were characterized despite the narrow thickness (∼3 nm) of the ferromagnetic layer relative to the total element thickness (∼42 nm). Individual elements were able to support different remanent states and their magnetic microstructure was sensitive to their size. The simulations confirmed that the coercivities of the elements and their domain structures were highly sensitive to the strength and orientation of the pinning field. A good fit to the experimental data was provided by using an interface exchange field that had a fixed amplitude and direction in the simulations, and small disagreements were attributed to structural imperfections. These differences emphasize the value of an experimental technique such as electron holography for probing local micromagnetic structure in individual nanostructured elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.