Abstract

In this paper, the off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid immovable (fixed) sphere is investigated. It is shown here that shifting the sphere off the axis of wave propagation induces a dependence of the scattering on the azimuthal angle. Theoretical expressions for the incident and scattered field from a rigid immovable sphere are derived. The near- and far-field acoustic scattering fields are expressed using partial wave series involving the spherical harmonics, the scattering coefficients of the sphere, the half-conical angle of the wave number components of the beam, its order and the beam-shape coefficients. The scattering coefficients of the sphere and the 3D scattering directivity plots in the near- and far-field regions are evaluated using a numerical integration procedure. The calculations indicate that the scattering directivity patterns near the sphere and in the far-field are strongly dependent upon the position of the sphere facing the incident high-order Bessel vortex beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call