Abstract

Autologous chimeric antigen receptor (CAR) T cells have expanded the scope and therapeutic potential of anti-cancer therapy. Nevertheless, autologous CAR-T therapy has been challenging due to labor some manufacturing processes for every patient, and the cost due to the complexity of the process. Moreover, T cell dysfunction results from the immunosuppressive tumor microenvironment in certain patients. Considering technical challenges in autologous donors, the development of safe and efficient allogeneic CAR-T therapy will address these issues. Since the advent of the generation of immune cells from pluripotent stem cells (PSCs), numerous studies focus on the off-the-shelf generation of CAR-immune cells derived from the universal donorPSCs, which simplifies the manufacturing process and standardizes CAR-T products. In this review, we will discuss advances in the generation of immune cells from PSCs, together with the potential and perspectives of CAR-T, CAR-macrophages, and CAR-natural killer (NK) cells in cancer treatment. The combination of PSC-derived immune cells and CAR engineering will pave the way for developing next-generation cancer immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call