Abstract

Off-road operations are critical in many fields and the complexity of the tire-terrain interaction deeply affects vehicle performance. In this paper, a semi-empirical off-road tire model is discussed. The efforts of several researchers are brought together into a single model able to predict the main features of a tire operating in off-road scenarios by computing drawbar pull, driving torque, lateral force, slip-sinkage phenomenon and the multi-pass behavior. The approach is principally based on works by Wong, Reece, Chan, and Sandu and it is extended in order to catch into a single model the fundamental features of a tire running on soft soil. A thorough discussion of the methodology is conducted in order to highlight strengths and weakness of different implementations. The study considers rigid wheels and flexible tires and analyzes the longitudinal and the lateral dynamics. Being computationally inexpensive a semi-empirical model is attractive for real time vehicle dynamics simulations. To the best knowledge of the authors, current vehicle dynamics codes poorly account for off-road operations where tire-terrain interaction dominates vehicle performance. In this paper two soils are considered: a loose sandy terrain and a firmer loam. Results show that the model realistically predicts longitudinal and lateral forces providing at the same time good estimates of the slip-sinkage behavior and tire parameters sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call