Abstract

Turn-off fluorescence of organic fluorophore, 2-{[4-(2H-Naphtho[1,2-d][1,2,3]triazol-2-yl)-phenyl]carboxylic acid (NTPC), with metal ions (Fe(3+), Cu(2+), Pb(2+)) was converted into turn-on fluorescent sensor for biologically important Zn(2+), Cu(2+) and Fe(3+) metal ions in aqueous solution at ppb level by exploiting strong fluorescence quenching phenomena of metal nanoparticles when organic fluorophores assembled in the vicinity of metallic surface. Amino acid attached phenolic ligands (L) were used as reducing as well as functional capping agents in the synthesis of silver nanoparticles (AgNPs). The hydrogen bonding functionality of L facilitated the assembling of NTPC in the vicinity of metallic surfaces that leads to complete quenching of NTPC fluorescence. The strong and selective coordination of L with metal ions (Zn(2+), Cu(2+) and Fe(3+)) separates the NTPC from the AgNPs surface that turn-on the NTPC fluorescence. HR-TEM and absorption studies confirm the metal coordination with L and separation of NTPC from the AgNPs surface. Mn(2+) showed selective red shifting of NTPC fluorescence after 12 h with all sample. Effects of different amino acid attached phenolic ligands were explored in the metal ion sensitivity and selectivity. This approach demonstrates the multifunctional utility of metal NPs in the development of turn-on fluorescence sensor for paramagnetic heavy metal ions in aqueous solution. ᅟ

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.