Abstract
Stepwise complex formation is observed between 2,3,5,6-tetrakis(2-pyridyl)pyrazine (TPPZ) and a series of metal ions (M(n+) = Sc3+, Y3+, Ho3+, Eu3+, Lu3+, Nd3+, Zn2+, Mg2+, Ca2+, Ba2+, Sr2+, Li+), where TPPZ forms a 2:1 complex [(TPPZ)2-M(n+)] and a 1:1 complex [TPPZ-M(n+)] with Mn+ at low and high concentrations of metal ions, respectively. The fluorescence intensity of TPPZ begins to increase at high concentrations of metal ions, when the 2:1 (TPPZ)2-M(n+) complex is converted to the fluorescent 1:1 TPPZ-M(n+) complex. This is regarded as an "OFF-OFF-ON" fluorescence sensor for metal ions depending on the stepwise complex formation between TPPZ and metal ions. The fluorescence quantum yields of the TPPZ-M(n+) complex vary depending on the metal valence state, in which the fluorescence quantum yields of the divalent metal complexes (TPPZ-M2+) are much larger than those of the trivalent metal complexes (TPPZ-M3+). On the other hand, the binding constants of (TPPZ)2-M(n+) (K1) and TPPZ-M(n+) (K2) vary depending on the Lewis acidity of metal ions (i.e., both K1 and K2 values increase with increasing Lewis acidity of metal ions). Sc3+, which acts as the strongest Lewis acid, forms the (TPPZ)2-Sc3+ and TPPZ-Sc3+ complexes stoichiometrically with TPPZ. In such a case, "OFF-OFF-ON" switching of electron transfer from cobalt(II) tetraphenylporphyrin (CoTPP) to O2 is observed in the presence of Sc3+ and TPPZ depending on the ratio of Sc3+ to TPPZ. Electron transfer from CoTPP to O2 occurs at Sc3+ concentrations above the 1:2 ratio ([Sc3+]/[TPPZ]0 > 0.5), when the (TPPZ)2-Sc3+ complex is converted to the TPPZ-Sc3+ complex and TPPZ-(Sc3+)2, which act as promoters of electron transfer (ON) by the strong binding of O2*- with Sc3+. In sharp contrast, no electron transfer occurs without metal ion (OFF) or in the presence at Sc3+ concentrations below the 1:2 ratio (OFF), when the (TPPZ)2-Sc3+ complex has no binding site available for O2*-.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.