Abstract

Several TH-TH code coupling methods are used in the nuclear industry to model the core thermal–hydraulic conditions and the system behaviour. In some cases, the boundary conditions obtained by system codes are applied to sub-channel codes by table (off-line coupling). Even though this approach is in general considered valid, some boundary parameters will present inconsistencies. Alternatively, system and sub-channel codes are coupled using different coupling methods (semi-implicit coupling). Recent studies have shown a strong influence of the boundary conditions uncertainty on the sub-channel code results. The present study aims to evaluate the differences produced by the coupling methods by performing a best-estimate plus uncertainties (BEPU) comparison to the following cases: a complete loss of forced flow and a pressurizer relief valve opening. Results show that BEPU analysis presents good agreement with some discrepancies that can be explained and correlated to the boundary conditions deviations between codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.