Abstract
This paper presents a new approach to off-line, handwritten numeral recognition. From the concept of perturbation due to writing habits and instruments, we propose a recognition method which is able to account for a variety of distortions due to eccentric handwriting. We tested our method on two worldwide standard databases of isolated numerals, namely CEDAR and NIST, and obtained 99.09 percent and 99.54 percent correct recognition rates at no-rejection level respectively. The latter result was obtained by testing on more than 170000 numerals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.