Abstract
This paper proposes a novel off-line Chinese signature verification method based on support vector machines. The method uses both static features and dynamic features. The static features include moment features and 16-direction distribution (an improvement on 4-direction distribution). The dynamic features include gray distribution and stroke width distribution. At last, support vector machine is used to classify the signatures. The main steps of constructing a signature verification system are discussed and experiments on real data sets show that the average error rate can reach 5%, which is obviously satisfactory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.