Abstract

In this paper, we focus on estimating Direction of Arrival (DOA) and removing heavy clutter embedded with measurement noise. A correlated Gaussian process is chosen to model destructive effects of clutter. Also, a white Gaussian process is selected to describe measurement noise caused by sensor array. After adding these distortions to the off-grid model, we utilize Sparse Bayesian Learning and principal component analysis (as a preprocessing stage) in order to remove these distortions as well as estimating of true DOAs. Finally, at the end we will show how ignorance of clutter from model or combine it with measurement noise degrade DOA estimation. This will be demonstrated by various numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.