Abstract

In this paper, a novel off-grid direction-of-arrival (DOA) estimation algorithm is proposed based on steering vector approximation. The conventional multiple signal classification (MUSIC) technique estimates the DOA with a uniformly discretized grid by assuming that the true DOAs lie on the grids. In practice, this assumption is rarely satisfied. In order to improve the estimation accuracy, a dense sampling grid is required for the MUSIC technique. Besides the higher computational complexity, it is still not guaranteed that the dense sampling grids will cover the true DOAs. In order to address the off-grid problem with a lower computational complexity, we use the Taylor series expansion to approximate the steering vectors. We first construct a two-dimensional spectrum searching method to simultaneously estimate the nearest on-grid DOA and the corresponding off-grid error. To further improve the estimation accuracy, we then solve an optimization problem to obtain the accurate DOA estimation, which is formulated by the fact that the signal and noise subspaces are orthogonal to each other. Simulation results demonstrate the effectiveness of the proposed off-grid DOA estimation algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.