Abstract

The non-Gaussian fluctuations of baryon density are sensitive to the presence of the conjectured QCD critical point. Their observational consequences are crucial for the ongoing experimental search for this critical point through the beam energy scan program at Relativistic Heavy Ion Collider (RHIC). In the expanding fireball created in a heavy-ion collision, critical fluctuations would inescapably fall out of equilibrium and require a systematic description within a dynamical framework. In this paper, we employ newly developed effective field theory (EFT) for fluctuating hydrodynamics to study the real-time critical non-Gaussian fluctuations of a conserved charge density. In particular, we derive the evolution equations for multi-point correlators of density fluctuations and obtain the closed-form solutions with arbitrary initial conditions that can readily be implemented in realistic simulations for heavy-ion collisions. We find that non-linear interactions among noise fields, which are missing in traditional stochastic hydrodynamics, could potentially contribute to the quartic (fourth-order) fluctuations in the scaling regime even at tree level in off-equilibrium situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.