Abstract

It was observed recently that the giant magnetoimpedance (GMI) effect in Fe-rich glass-coated amorphous microwires with positive magnetostriction can be improved significantly by means of post-annealing. The increase in the GMI is attributed to the induced helical magnetic anisotropy in the surface layer of the microwire, which appears after the annealing. The application of external stresses to the microwire may result in changes in its magnetic structure and affect the GMI response. In this work, we study theoretically the influence of the tensile and torsional stresses on the off-diagonal magnetoimpedance in annealed amorphous microwires with positive magnetostriction. The static magnetization distribution is analyzed in terms of the core–shell magnetic structure. The surface impedance tensor is obtained taking into account the magnetoelastic anisotropy induced by the external stresses. It is shown that the off-diagonal magnetoimpedance response exhibits strong sensitivity to the magnitude of the applied stress. The obtained results may be useful for sensor applications of amorphous microwires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.