Abstract

This letter studies the relationship between the off-diagonal elastic constant C12 and bond configuration in nanocrystalline-diamond (NCD) thin films deposited by the nitrogen-doped chemical vapor deposition method. The film thickness was varied between 2.4 and 11.3μm. The elastic constants were measured by resonant-ultrasound spectroscopy coupled with laser-Doppler interferometry. The diagonal elastic constants C11 and C44, and Young’s modulus in NCD films are smaller than those of the bulk polycrystalline diamond and microcrystalline-diamond (MCD) thin films, and they decrease as the film thickness decreases. However, the off-diagonal elastic constant of the NCD films is significantly larger than that of the bulk diamond, while that of the MCD films is smaller. Micromechanics calculations revealed that this exceptional enhancement of C12 occurs when the material includes randomly distributed thin graphitic plates in the isotropic diamond matrix. Thus, this result indicates that the NCD films consist of sp3-bonded diamond grains and sp2-bonded grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.