Abstract

Gas turbines are considered as one of the leading internal combustion engines in modern air transportation due to its favourable power to weight ratio and its continuous combustion process. Recent research focus has been concerned with performance improvements aimed at reduced fuel consumption and hence reduced impact on the environment. This study is aimed at using theoretical and computational methods to model the operation and performance a turbojet gas turbine engine. The commercial software GasTurb13 was used for the theoretical simulation while Microsoft Excel was used for the analytical study. GasTurb13 solved the model using pseudo-perfect gas models i.e. component maps since the specific gas ratio could not be inputted into the solver. The effect of changes in the Mach number and altitude on the engine performance was studied. Also the effect of changes in the compressor pressure ratio, the turbine inlet temperature and the afterburner exit temperature were also studied. Results obtained showed the optimum pressure ratio at maximum thrust constraint to be 16.78 for the turbojet engine operating at Mach number (Ma) = 0.8 and altitude = 10,000 m, Turbine inlet temperature (TIT) = 1200 K and Afterburner exit temperature = 1800 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.