Abstract

With the increasing penetration of variable renewable energy, integrated energy systems (IES) have become increasingly complex. Unfortunately, the widely used constant efficiency model is too simplified to reflect actual operating conditions. Therefore, this study investigated the effects of off-design characteristics on the operation and configuration of integrated energy systems, both singly and collectively. To this aim, a two-stage optimization framework was applied to optimize the operation and configuration of IES. The off-design characteristics include the electric-thermal correlation of gas turbines (GTs), the load rate-efficiency correlation of gas boilers (GBs) and absorption chillers (ACs), and the temperature-efficiency correlation of heat pumps (HPs) and electric chillers (ECs).When off-design characteristics are considered, the optimal capacities of the energy conversion equipment tend to increase and system costs would increase. For all system equipment, the capacity of the EC increases by 515.4% and the system cost increases by 7.3%. Regarding system operation, the effects of off-design characteristics on the operation of the GT and AC are most significant for all energy conversion equipment. The electric energy storage (EES) and the thermal energy storage (TES) help to reduce the capacity of the GT and system cost. When off-design characteristics are considered, their effects are magnified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.