Abstract

Abstract The two-dimensional streamline curvature through-flow modeling of turbomachinery is still a key element for turbomachinery preliminary analysis. Basically, axisymmetric swirling flow field is solved numerically. The effects of blades are imposed as sources of swirl, work input/output and entropy generation. Although the topic is studied vastly in the literature for compressors and turbines, combined modeling of the transonic fan and the downstream splitter of turbofan engine configuration, to the authors’ best knowledge, is limited. In a prior study, the authors presented a new method for bypass fan modeling for inverse design calculations. Moreover, new set of practical empirical correlations are calibrated and validated. This paper is an extension of this study to rapid off-design analysis of transonic by-pass fan systems. The methodology is validated by two test cases: NASA 2-stage fan and GE-NASA bypass fan case. The proposed methodology is a simple extension for streamline curvature method and can be applied to existing compressor methodologies with minimum numerical effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.