Abstract

In this paper, we propose a novel estimation and decoding scheme for power-line communication (PLC) systems in impulsive noise environments. The proposed scheme is based on the turbo coding combined with adaptive noise compensation to reduce burst errors and multipath effects. For this purpose, the PLC channel and noise models are introduced, then, the turbo encoder/decoder are inserted in the mapper/demapper and the pilot insertion block for the sake of enhancing preliminary estimation of the transmitted orthogonal frequency division multiplexing signals. The proposed impulsive noise compensator is based on the estimation of the impulse bursts using a new blanking/clipping function, and on the estimation of the signal to impulse noise ratio and the peak to average power ratio. Simulation results illustrate that receivers with combined turbo coding and the proposed noise compensator drastically outperform existing receivers under impulsive noise. In comparison to some existing schemes, the proposed scheme reaches its perfect performance in a reduced 15-paths environment, when the bit error rate and mean square error performance are tested. The improvements in SNR performance are more than 16 dB for BPSK modulation and can reach 12---20 dB for 16-QAM modulation, when a high impulsive noise level is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.