Abstract
In protein or peptide chemistry, thiols are frequently chosen as a chemical entity for chemoselective modification reactions. Although it is a well-established methodology to address cysteines and homocysteines in aqueous media to form S-C bonds, possibilities for the chemoselective formation of asymmetric disulfides have been less approached. Focusing on bioreversibility in conjugation chemistry, the formation of disulfide bonds is highly desirable for the attachment of thiol-containing bioactive agents to proteins or in cross-linking reactions, because disulfide bonds can combine stability in blood with degradability inside cells. In this Concept article, recent approaches in the field of activating groups for thiol moieties incorporated in peptide and polymer materials are highlighted. Advantageous combinations of stability during synthesis of the material with high reactivity towards thiols are explored focusing on simplification and prevention of side reactions as well as additional deprotection and activation steps prior to disulfide formation. Moreover, applications of this chemistry are highlighted and future perspectives are envisioned.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.