Abstract

Abstract A large body of research shows that maternal stress during an offspring’s early life can impact its phenotype in both the short and long term. In the Vertebrata, most research has been focused on maternal stress during the prenatal period. However, the postnatal period is particularly important in mammals because maternal milk provides a conduit by which maternal hormones secreted in response to stressors (glucocorticoids, GCs) can reach offspring. Moreover, lactation outlasts gestation in many species. Though GCs were first detected in milk over 40 years ago, few studies have explored how they affect nursing offspring, and no reviews have been written on how maternal stress affects nursing offspring in the natural world. We discuss the evolution of milk and highlight its importance in each of the three mammalian lineages: monotremes (subclass Monotremata), marsupials (infraclass Marsupialia), and eutherians (infraclass Placentalia). Most research on the effects of milk GCs on offspring has been focused on eutherians, but monotremes and marsupials rely on their mothers’ milk for a proportionally longer period of time, and so research on these taxa may yield more insight. We show that GCs are important for milk production, both during an individual nursing bout and over the entire lactation period, and review evidence of GCs moving from maternal blood to milk, and eventually to nursing offspring. We examine evidence from rodents and primates of associations between GC levels in lactating females (either blood or milk) and offspring behaviour and growth rates. We discuss ways that maternal stress may impact these offspring phenotypes outside of milk GCs, such as changes to: (1) milk output, (2) other milk constituents (e.g. macronutrients, growth factors, cytokines), and (3) maternal care behaviour. Critical to understanding the fitness impacts of elevated maternal GC levels during lactation is to place this within the context of the natural environment. Species‐specific traits and natural histories will help us to understand why such maternal stress produces different offspring phenotypes that equip them to cope with and succeed in the environment they are about to enter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.