Abstract

Varying the polyethyleneglycol spacer between two (iso)-nicotinic groups of the ligand systems, a large structural variety of silver coordination compounds was obtained, starting with zero-dimensional ring systems, via one-dimensional chains, helices and double-helices to two-dimensional polycatenanes. Theoretical calculations help to understand their formation and allow predictions in some cases. These structures can be tuned by careful design of the ligand, the use of solvent and the counter ions, influencing also other important properties such as light stability and solubility. The latter is important in the context of biomedical applications, using silver compounds as antimicrobial agents.

Highlights

  • Coordination compounds forming infinite motifs in one, two or three dimensions have been investigated over the past years for several reasons: structure prediction, tuning of chemical and physical properties, as well as applications as materials [1,2,3,4,5,6,7,8]

  • Having studied a number of silver coordination compounds and polymers for their antimicrobial properties as well as their capacity to form silver nanoparticles [11,12], we wish to highlight here a panoply of silver coordination compounds based on a series of ligands in which only the spacer between the main coordinating units is changed

  • The two ligands, derived from mono, respectively bis-ethyleneglycol and two isonicotinic acid end groups, L1 and L2, were used for the following studies (Scheme 1). These ligands possess a flexible backbone with O-donor functions, and N-donor atoms at both ends, allowing in principle for different metal ions to be coordinated at the individual Lewis basic sites

Read more

Summary

Introduction

Coordination compounds forming infinite motifs in one, two or three dimensions have been investigated over the past years for several reasons: structure prediction, tuning of chemical and physical properties, as well as applications as materials [1,2,3,4,5,6,7,8]. One of the main reasons is certainly the challenge of crystal engineering, being able to predict a solid state structure for a given combination of building blocks, based on metal ions, ligands and, eventually, counter ions and co-crystallizing solvent [9]. This can lead to ideal combinations of properties of the different building blocks, which are useful in applications such as in host-guest chemistry, catalysis, magnetic and optical applications, to name a few. The differences in structure type are presented here as a review together with some missing puzzle pieces in order to complete the picture of the variety of structures available in this way

Results and Discussion
Compounds with L1
Compounds with L2
Theoretical Calculations
Antimicrobial Properties
Formation of Nanoparticles
Experimental Section
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.