Abstract

We construct a generalized transfer matrix corresponding to noninteracting tight-binding lattice models, which can subsequently be used to compute the bulk bands as well as the edge states. Crucially, our formalism works even in cases where the hopping matrix is non-invertible. Following Hatsugai [PRL 71, 3697 (1993)], we explicitly construct the energy Riemann surfaces associated with the band structure for a specific class of systems which includes systems like Chern insulator, Dirac semimetal and graphene. The edge states can then be interpreted as non-contractible loops, with the winding number equal to the bulk Chern number. For these systems, the transfer matrix is symplectic, and hence we also describe the windings associated with the edge states on $Sp(2, \mathbb{R})$ and interpret the corresponding winding number as a Maslov index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.