Abstract
The data presented here show that, in cultures of type 1 astrocytes obtained from the hypothalamus of neonatal female rat, 17beta-oestradiol is able to increase both the mRNA and the protein levels of basic fibroblast growth factor (bFGF). In particular, after 24 h of exposure to 17beta-oestradiol (10(-9) and 10(-10) m), an increase of messenger levels of bFGF appears in hypothalamic type 1 astrocytes. Similarly, an induction of bFGF protein is also evident at this time of exposure. The effect on the mRNA and protein levels of bFGF is blocked by the presence in the medium of an antibody raised against the transforming growth factor alpha (TGFalpha) receptor. This observation indicates that, TGFalpha, whose synthesis is modulated by oestrogens in hypothalamic astrocytes and which is able to increase, both the mRNA and the protein levels of bFGF in our experimental model, may act as the mediator of the oestrogenic induction of bFGF. Hypothalamic astrocytes, together with hypothalamic neurones synthesizing and secreting luteinizing hormone-releasing hormone (LHRH), form the LHRH network in conjunction with other neuronal systems. Gonadal steroids in general, and oestrogens in particular, play an important role in the control of the activity of this network. In addition, bFGF and TGFalpha, two growth factors released from astrocytes, are able to influence the activity of LHRH neurones. The present observations suggest that oestrogens may also act on LHRH neurones in an indirect fashion (i.e. by modulating the expression of bFGF and TGFalpha in glial cells).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.