Abstract

Androgens can induce complete spermatogenesis in immature or prepubertal teleost fish. However, many aspects of the role of androgens in adult teleost spermatogenesis have remained elusive. Since oestrogens inhibit androgen synthesis, we used an oestrogen-induced androgen depletion model to identify androgen-dependent stages during adult zebrafish spermatogenesis. Exposure to 10 nM 17beta-oestradiol (E(2)) in vivo at least halved the mass of differentiating germ cells (from type B spermatogonia to spermatids), while type A spermatogonia accumulated. Studies on the cellular dynamics revealed that a reduction of spermatogonial proliferation together with an inhibition of their differentiation to type B spermatogonia were the basis for the oestrogen-mediated disturbance of spermatogenesis. The capacity of the zebrafish testis to produce 11-ketotestosterone as well as the expression of steroidogenesis-related genes was markedly decreased after in vivo oestrogen exposure. Moreover, the androgen-release response to recombinant zebrafish Lh was lost after oestrogen exposure. We conclude that oestrogen exposure caused a state of androgen insufficiency in adult male zebrafish. Since the downregulation of the steroidogenic system as well as the disturbance of spermatogenesis in testicular explants exposed to E(2) ex vivo was much less severe than after in vivo exposure, the main inhibitory effect appears to be exerted via feedback inhibition of gonadotropin release. This experimental set-up helped to identify spermatogonial proliferation and their differentiation as androgen targets in adult zebrafish spermatogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call