Abstract
BackgroundOestrogen receptor-positive (ER+) breast cancer is commonly treated using endocrine therapies such as aromatase inhibitors which block synthesis of oestradiol, but the influence of this therapy on the immune composition of breast tumours has not been fully explored. Previous findings suggest that tumour infiltrating lymphocytes and immune-related gene expression may be altered by treatment with aromatase inhibitors. However, whether these changes are a direct result of impacts on the host immune system or mediated through tumour cells is not known. We aimed to investigate the effect of oestrogen deprivation on the expression of chemokines and immune infiltration in vitro and in an ER+ immunocompetent mouse model.MethodsRT-qPCR and a bead-based Bioplex system were used to investigate the expression of chemokines in MCF-7 breast cancer cells deprived of oestrogen. A migration assay and flow cytometry were used to measure the migration of human peripheral blood mononuclear cells (PBMCs) to MCF-7 cells grown without the main biologically active oestrogen, oestradiol. Using flow cytometry and immunohistochemistry, we examined the immune cell infiltrate into tumours created by injecting SSM3 ER+ breast cancer cells into wild-type, immunocompetent 129/SvEv mice.ResultsThis study demonstrates that oestrogen deprivation increases breast cancer secretion of TNF, CCL5, IL-6, IL-8, and CCL22 and alters total human peripheral blood mononuclear cell migration in an in vitro assay. Oestrogen deprivation of breast cancer cells increases migration of CD4+ T cells and decreases migration of CD11c+ and CD14+ PBMC towards cancer cells. PBMC migration towards breast cancer cells can be reduced by treatment with the non-steroidal anti-inflammatory drugs, aspirin and celecoxib. Treatment with endocrine therapy using the aromatase inhibitor letrozole increases CD4+ T cell infiltration into ER+ breast cancer tumours in immune competent mice.ConclusionsThese results suggest that anti-oestrogen treatment of ER+ breast cancer cells can alter cytokine production and immune cells in the area surrounding the cancer cells. These findings may have implications for the combination and timing of anti-oestrogen therapies with other therapies.
Highlights
Oestrogen receptor-positive (ER+) breast cancer is commonly treated using endocrine therapies such as aromatase inhibitors which block synthesis of oestradiol, but the influence of this therapy on the immune composition of breast tumours has not been fully explored
Investigation of potential mediators of immune migration in aromatase inhibitor‐treated tumours To identify potential mediators of immune cell recruitment in ER+ breast tumours, we analysed data from 81 patients treated with Aromatase inhibitors (AIs) in a neoadjuvant study [18, 25]
These data are consistent with our analysis of gene expression in AI-treated ER+ breast cancers from postmenopausal women where the three chemokines analysed by Reverse transcriptase quantitative PCR (RT-qPCR) in vitro were upregulated in patient tumours (Table 2) and the gene expression profiles were suggestive of a broad inflammatory response to AI treatment [18]
Summary
Oestrogen receptor-positive (ER+) breast cancer is commonly treated using endocrine therapies such as aromatase inhibitors which block synthesis of oestradiol, but the influence of this therapy on the immune composition of breast tumours has not been fully explored. Previous findings suggest that tumour infiltrating lymphocytes and immune-related gene expression may be altered by treatment with aromatase inhibitors. Whether these changes are a direct result of impacts on the host immune system or mediated through tumour cells is not known. We aimed to investigate the effect of oestrogen deprivation on the expression of chemokines and immune infiltration in vitro and in an ER+ immunocompetent mouse model
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.